# Government Reference Link Models: ORCA

Larry C. Andrews

Email: landrews@mail.ucf.edu

Ronald L. Phillips

Email: phillips@mail.ucf.edu

Florida Space Institute (FSI)
College of Optics/CREOL
University of Central Florida

ORCA Proposers' Day Workshop: July 11, 2007
Arlington, VA

### **Mathematical Link Models**

- Government will provide mathematical models for
  - Uplink (slant) paths
  - Downlink (slant) paths
  - Horizontal paths

 Models can be useful tool for system design



### References



L. C. Andrews and R. L. Phillips, *Laser Beam Propagation Through Random Media*, 2<sup>nd</sup> ed., SPIE Press (2005).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications, SPIE Press (2001).

L. C. Andrews, A Field Guide to Atmospheric Optics, SPIE Press (2004).

### Optical Atmospheric Propagation Effects

#### Absorption & Scattering (extinction)

- Attenuation of optical wave
- Reduces received power
- Limits optical channel availability in the presence of fog or clouds

#### Fluctuations in Index of Refraction

- Small temperature fluctuations cause refractive-index fluctuations known as optical turbulence
- Cause intensity and phase fluctuations on propagating beam

#### Atmospheric Links

- Extended path turbulence between Transmitter and Receiver (Tx & Rx)
  - Uplink/downlink to/from aircraft
  - Aircraft to aircraft
- Aero-optic effect around aircraft, especially with external dome
  - Modeled as thin turbulent layer (phase screen) near Tx/Rx

#### Propagation Enfects on Seam

- Larger beam spot size at receiver.
  - Leads to additional power loss in signal
- Beam wander
  - Caused by surbulent eddies near Tx.
  - Contributes to long-term spot size.
  - Can contribute to scintillation
- Scintillation (intensity fluctuations).
  - Reduces signal-to-noise ratio (SrIR)
  - Leads to signal fades
- Phase fluctuations
  - Angle-of-armval fluctuations (causes beam juter on detector)
  - Reduces spatial coherence of beam (determines speckle size at Rx)
  - Limits heterodyne efficiency in coherent detection
  - Limits "effective" Rx aperture size for improved ShR to size of r<sub>0</sub>

 $r_0$  = Fried's parameter.

### Optical Atmospheric Propagation Effects

#### Absorption & Scattering (extinction)

- Attenuation of optical wave
- Reduces received power
- Limits optical channel availability in the presence of fog or clouds

#### Fluctuations in Index of Refraction

- Small temperature fluctuations cause refractive-index fluctuations known as optical turbulence
- Cause intensity and phase fluctuations on propagating beam

#### Atmospheric Links

- Extended path turbulence between Transmitter and Receiver (Tx & Rx)
  - Uplink/downlink to/from air
  - Aircraft to aircraft
- Aero-optic effect around aircraft, especially with external dome
  - Modeled as thin turbulent layer (phase screen) near Tx/Rx

#### Propagation Effects on Beam

- Larger beam spot size at receiver.
  - Leads to additional power loss in signal
- Beam wander
  - Caused by turbulent eddies near Tx
  - Contributes to long-term spot size
  - Can contribute to scintillation
- Scintillation (intensity fluctuations)
  - Reduces signal-to-noise ratio (SNR)
  - Leads to signal fades
- Phase fluctuations
  - Angle-of-arrival fluctuations (causes beam jitter on detector)
  - Reduces spatial coherence of beam (determines speckle size at Rx)
  - Limits heterodyne efficiency in coherent detection
  - Limits "effective" Rx aperture size for improved SNR to size of r<sub>0</sub>

 $r_0$  = Fried's parameter

## Mitigation of Atmospheric Effects on Optical Communication Link

#### Transmitter System Architecture

- Increase transmitted power.
  - Improve SNR at Rx
- Multiple beams
  - Sufficiently separated to ensure statistical independence at Rx
  - Produces aperture averaging of scintillation (similar to receiver array)
- Multi-mode beams
- Partially coherent beams
- Multiple frequency regimes
  - RF and optical
- Adaptive optics
  - Corrects phase distortions caused by optical turbulence

#### Receiver System Architecture

- Incoherent (direct) detection
  - intensity modulation
  - Targe aperture receiver (improve reliability)
  - array receivers (improve reliability)
- Coherent (heterodyne) detection
  - Intensity and phase modulation.
  - Targe aperшre receiven
  - armay receivers

## Mitigation of Atmospheric Effects on Optical Communication Link

#### Transmitter System Architecture

- Increase transmitted power.
  - Improve SNR at Rx
- Multiple beams.
  - Sufficiently separated to ensure statistical independence at Rx
  - Produces aperture averaging of scintillation (similar to receiver array)
- Multi-mode beams
- Partially coherent beams
- Multiple frequency regimes
  - RF and optical
- Adaptive optics
  - Corrects phase distortions caused by optical turbulence

#### Receiver System Architecture

- Incoherent (direct) detection
  - intensity modulation
  - large aperture receiver (improve reliability)
  - array receivers (improve reliability)
- Coherent (heterodyne) detection
  - intensity and phase modulation
  - · large aperture receiver
  - array receivers

Intensity cross-section of beam after propagating thru extended turbulence. Dark patches denote a signal fade and yellow circle(s) depict(a) a large Rx aperture or (b) an array of small Rx apertures.

(a)



(b)



### Intensity Fluctuations









Focusing Regime



Saturation Regime

**Figure** Intensity profile of beam after passing through phase screen, immediately beyond (bottom), further beyond (middle), and far beyond (top).

### **Mathematical Formulas**

#### **Propagation Paths**

- . Uplink (slant) path from ground to aircraft
- . Downlink (slant) path from aircraft to ground
- Horizontal path between two aircraft

| Table of Contents                                                                                      |         |
|--------------------------------------------------------------------------------------------------------|---------|
| Definitions of Statistical Quantities                                                                  | 2       |
| Atmospheric Models                                                                                     | 4       |
| Input Plane Parameters                                                                                 | 4       |
| Numerical Integrals                                                                                    | 5<br>5  |
| Downlink                                                                                               | 5<br>6  |
| Mathematical Models for Downlink Propagation Path  Mathematical Models for Horizontal Propagation Path | 8<br>10 |
| Mean BER Model                                                                                         | 12      |
| Coherent Detection                                                                                     | 13      |

# **Atmospheric Models**

#### Kolmogorov Spectrum:

$$\Phi_n(\kappa,h) = 0.033C_n^2(h)\kappa^{-11/3}$$

#### Hufnagle-Valley (HV):

$$\begin{cases} C_n^{3}(h) = 0.00594 \left(\frac{w}{27}\right)^{3} \left(10^{-3}h\right)^{10} \exp\left(-\frac{h}{1000}\right) \\ + 2.7 \times 10^{-10} \exp\left(-\frac{h}{1500}\right) + A \exp\left(-\frac{h}{100}\right) \end{cases}$$



- n = altitude
- w = upper atmospheric pseudo-wind speed (= 21 m/s for  $HV_{s,q}$ )
- $A = C_0^{-2}$  near ground level (= 1.7 **9** 10<sup>-14</sup> m<sup>-28</sup> for HV<sub>50</sub>)



## **CONCLUDING REMARKS**

- Scintillation index (variance/mean<sup>2</sup>) may be worse at weaker  $C_n^2$
- Aperture averaging can reduce signal fluctuations
- Speckle size at long ranges through weak  $C_n^2$  values may be too large for single aperture averaging
- Array of small receivers (properly separated) can reduce scintillation index more than single large aperture
- Multiple beams can reduce scintillation like an array of receivers



